Headquarters U.S. Air Force

Integrity - Service - Excellence

Mechanical Ventilation Methods in Transport of Critically Injured Patients

- The opinions expressed on this document are solely those of the author(s) and do not represent an endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government
- This study was conducted under a protocol reviewed and approved by the Wilford Hall Ambulatory Surgical Center IRB and in accordance with the approved protocol
- The authors acknowledge Department of Defense Trauma Registry (DoDTR) for providing data for this study

BACKGROUND

Tidal Volumes for Ventilation of Patients with ARDS - ARDSNet ARMA Trial

Male Patients

Female Patients

						c	c's per K	g									c	c's per K	g		
ŀ	Height			4	5	6	7	8	9	10		Height			4	5	6	7	8	9	10
ft in	in	cm	Pre Wt (Kg)								ft in	in	cm	Pre Wt (Kg)							
<mark>5'6</mark> "	66	168	64	255	320	385	445	510	575	640	5'	60	152	46	180	230	275	320	365	410	455
<mark>5'8</mark> "	68	173	68	275	340	410	480	545	615	685	5'2″	62	157	50	200	250	300	350	400	450	500
5'10"	70	178	73	290	365	440	510	585	655	730	5'4"	64	163	55	220	275	330	385	440	490	545
6'	72	183	78	310	390	465	545	620	700	775	5'6"	66	168	59	235	295	355	415	475	535	595
6'2"	74	188	82	330	410	495	575	660	740	820	5'8"	68	173	64	255	320	385	445	510	575	640
6'4"	76	193	87	345	435	520	610	695	780	870	5'10"	70	178	69	275	345	410	480	550	615	685
6'6"	78	198	91	365	455	550	640	730	825	915	6'	72	183	73	290	365	440	510	585	660	730

					PEEP	Titra	tion	Table	- AR	DSNe	t AR	MAT	rial				
PEEP	5	5	8	8	10	10	10	12	14	14	14	16	18	18	20	22	24
FiO2	0.3	0.4	0.4	0.5	0.5	0.6	0.7	0.7	0.7	0.8	0.9	0.9	0.9	1	1	1	1
	Pa	tients	falling			ea are	not ne	able t cessari ed as d	ly too	sick fo	- r flight	but ris			fits sh	ould t	be

¹Increasing PEEP will decrease cardiac output and may cause significant hypotension in hypovolemic patients. Additional volume loading may be necessary to maintain hemodynamics.

²This is a fairly accurate indicator of plateau pressure in our patient population. Plateau pressure is the correct parameter to follow but it cannot be easily measured with the Impact 754 ventilator.

³Measuring the patient's "wingspan" should be used as an estimate of height. Sternum to fingertip multiplied x 2.

⁴A pH of 7.2 may be an appropriate target if hemodynamics are relatively normal.

CCATT Mechanical Ventilation Clinical Practice Guideline

Primary Author: Lt Col Phillip Masonphillip.mason@amedd.army.milInitial Publication Date: Mar 2012Peer Reviewers: Lt Col David Norton, Lt Col Mike Petro, Mr. Richard Branson, Lt Col Patrick Allan, Col WarrenDorlac, Maj Julio Lairet, Col Scott Vandehoef, Lt Col Dax Holder

Volume Control Ventilation

- 1. Set the I:E ratio at 1:2 to 1:4. Turning the inspiratory time knob on the Impact 754 all the way left will give 1:2 without having to adjust the inspiratory time.
- Set PEEP and FiO₂ according to ARDSNet ARMA Trial PEEP table to achieve SaO₂ 92 96%¹. Note that the Impact 754 and LTV 1000 are limited to PEEP 20.
- 3. Set tidal volume at 6 cc/Kg and note peak inspiratory pressure (PIP)². If necessary, decrease tidal volume by 1 cc/Kg as needed to keep peak inspiratory pressure ≤ 35 cm H₂O (preferably ≤ 30). Do not go below 4 cc/Kg. Use table below as reference for appropriate tidal volume³.
- 4. Adjust respiratory rate to achieve $pH \ge 7.3^4$. The actual PCO₂ is not important, only the pH.

Pressure Control Ventilation

- 1. Set I time to achieve I:E ratio of 1:2 to 1:4.
- Set PEEP and FiO₂ according to ARDSNet ARMA Trial PEEP table to achieve SaO₂ 92 96%¹. Note that the Impact 754 and LTV 1000 are limited to PEEP 20.
- Set inspiratory pressure to achieve a tidal volume of 6 cc/kg. If this value is > 30 cm H₂O then decrease until it is ≤ 30 cm H₂O or until tidal volume is 4 cc/kg. Use table below as reference for appropriate tidal volume³.
- 4. Adjust respiratory rate to achieve $pH \ge 7.3^4$. The actual PCO₂ is not important, only the pH.

- Describe ventilator settings of patients transported by CCATT
- Evaluate the influence of ventilator settings on patient outcomes (through 30 days)
- Provide data to improve utilization of existing CPG and identify potential gaps

Study Design

- Retrospective review
 - CCATT medical records
 - Patients requiring mechanical ventilation
 - Transported 2007-2012
 - Trained data abstractors
 - Consensus review
 - Serial meetings

Integrity - Service - Excellence

CCATT Records

- Demographics, injury description
- Pre-flight vitals, labs, and oxygenation status
- In-flight vitals, labs, interventions, and complications
- Post-flight vitals and labs

Department of Defense Trauma Registry (DoDTR)

- ISS
- Clinical events
- Outcomes up to 30 days
- Mortality

Integrity - Service - Excellence

Definitions of Complications

U.S. AIR FORCE

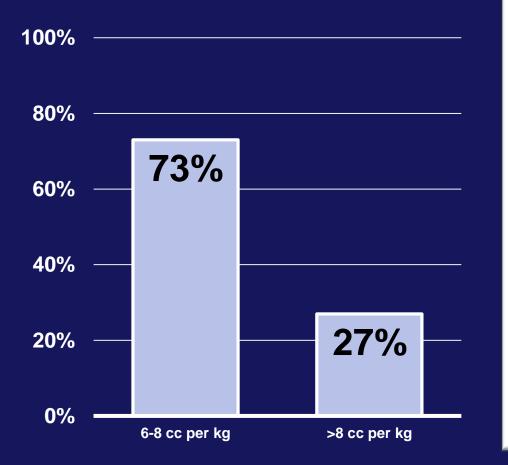
lyperthermia	Body temperature ≥ 100.5 F or 38 C
	SpO2 ≤90%
Deepireters/	Increase FiO2 >10% or increase oxygen L/min >4%
Respiratory	Respiratory rate >22 or <10 bpm
	pCO2 <35 or >45 or change of 10% from baseline
	SBP ≤90 or ≥180 or 20% change from baseline
Hemodynamic	MAP ≤65 or ≥120 or 20% change from baseline
	CVP change from baseline of 5
Heart Rate	<60 bpm or >120 bpm or 20% change from baseline
↓urine output	As determined by CCATT clinical provider
Bleeding	As determined by CCATT provider
	As determined by CCATT provider to include:
Neurologic	change in mental status, motor, cognitive, or sensory
	ability; seizure

Statistical Methods

Frequencies and proportions

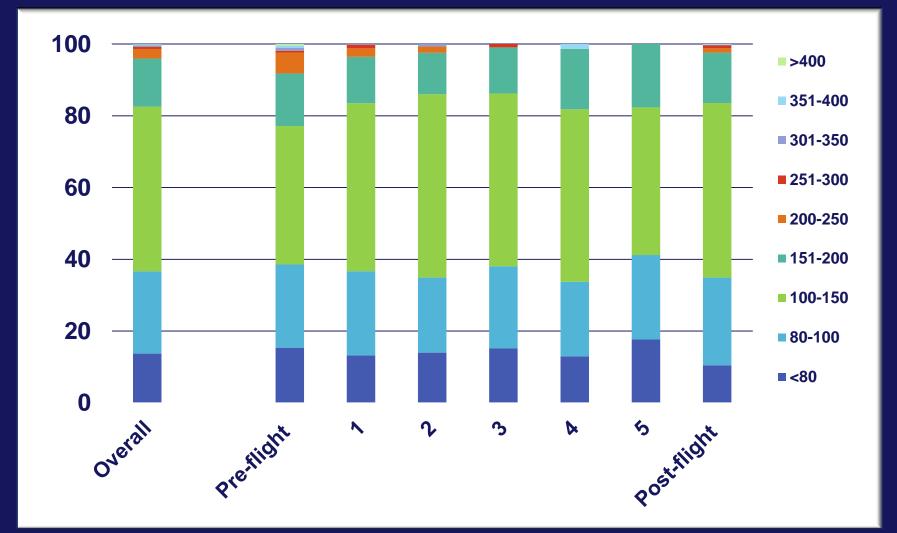
- Chi-square or Fisher's exact for categorical variables (%)
- T-test for continuous variables
 - Median [Interquartile Range]
- Significance set at p<0.05</p>

RESULTS



- CCATT 2007-2012 Records • Role 3 to LRMC
- Oxygen Support • Ventilated 60%

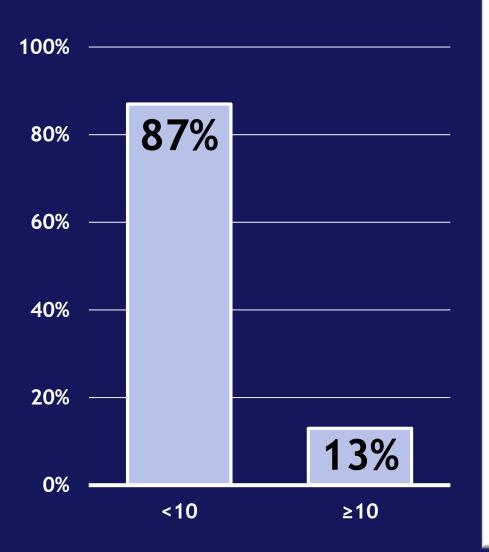
- Ventilation Mode
- Pressure Control 2%
- Volume Control 98%
 652 patients


Pre-Flight Tidal Volume

Greater than 8 cc per kg

- No differences in demographics
- Higher ISS
- No differences in pre-flight, in-flight, or post-flight oxygenation
- No differences in pre-flight, in-flight or post-flight outcomes

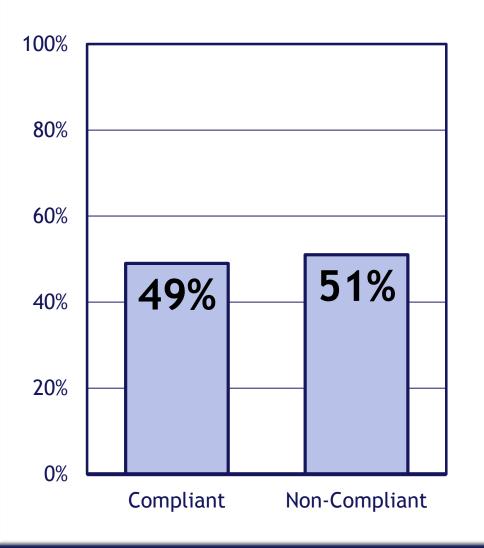
Proportion of Oxygen Saturation Values



Oxygen Requirement 100% 80% 79% 60% 40% 20% 21% 0% ≤50% >50%

Greater than 50%

- No differences in demographics
- Higher ISS
- More likely to receive a paralytic and have a chest tube
- Lower pre-flight PaO₂, but within reference range
- More likely to have an in-flight respiratory event 33% vs 63%, p<0.0001
- No differences in post-flight clinical events
- More ventilator, ICU, hospital days


Peak End Expiratory Pressure

Greater than or equal to 10

- No differences in demographics
- Higher ISS
- More likely to receive a paralytic and have a chest tube
- Lower pre-flight PaO₂, but within reference range
- More likely to have a pre-flight respiratory event 7% vs 15%, p<0.02
- No differences in in-flight or post-flight clinical events
- More ventilator days

ARDSNet Table

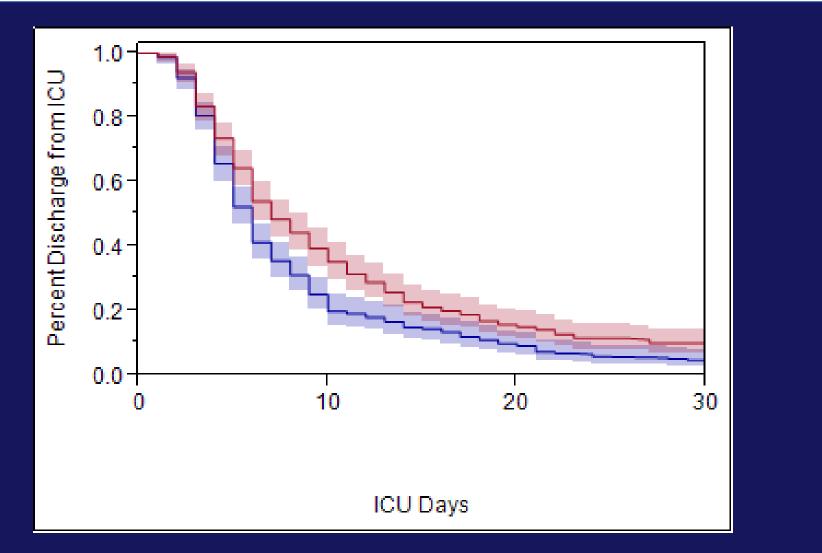
Non-Compliant

- Older (median 24 v. 25)
- Higher ISS (median 22 v. 27)
- No other differences in demographics
- More likely to have chest tube 19% vs 26%, p=0.04
- Higher rate of in-flight respiratory event 29% vs 50%, p<0.0001

U.S. AIR FORCE

	Compliant median[IQR] n=322	Non-Compliant median[IQR] n=329	p-value
Post-Flight Respiratory Event	28%	34%	0.07
ARDS/ARF/VAP	2%	9%	<0.0001
Post-Flight Coagulopathy	18%	18%	0.90
DVT/PE	9%	11%	0.63
Post-Flight Cardiac Event	16%	16%	0.99
Post-Flight Hemodynamic Event	24%	25%	0.76
Post-Flight Renal/Urinary Event	13%	9%	0.05
Ventilator Days	4 [3-6]	5 [3-8]	0.004
ICU Days	6 [4-9]	7 [4-13]	0.009
Hospital Days	12 [5-37]	14 [5-38]	0.82
Mortality	3%	5%	0.03

U.S. AIR FORCE


Proportional Hazards

	Ventilator Days	ICU Days	Hospital Days
Risk Ratio	1.21 (1.02-1.45)	1.21 (1.03-1.47)	1.03 (0.86-1.23)
p-Value	0.03	0.02	0.75

ARDSNet Table Compliance

U.S. AIR FORCE

Integrity - Service - Excellence

Mortality Logistics Regression Analysis

	Odds Ratio	p-Value
ARDSNet Table Non-Compliant	2.17 (1.01-4.95)	0.046

- Data collected retrospectively
- Subjectivity despite trained abstractors
- Data missing or unavailable

- Over half of CCATT patients are mechanically ventilated
- Compliance with ARDSNet guideline is low
- Non-compliance is associated with increased
 - Ventilator days, ICU days, Mortality
- Dissemination of findings = Lives Saved!

- Impact of ERC CPG/training
- Impact of closed loop ventilatory devices
- Impact of ERC hypoxia and hyperoxia on neurologic outcomes

U.S. AIR FORCE

- Thank you
 - Dr. Vikhyat Bebarta
 - Dr. Shelia Savell
 - Crystal Perez
 - Alex Mora
 - Lauren Reeves
 - Stephanie Russell
 - Joni Paciocco
 - Jill Lear
 - Kimberly Medellin
 - Jacob Minnick
 - William Terry
 - Avery Kester

